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Exercise 21

Use the Fourier transform to solve the boundary-value problem

uxx + uyy = −x exp(−x2), −∞ < x <∞, 0 < y <∞,

u(x, 0) = 0, for −∞ < x <∞, u and its derivative vanish as y →∞. Show that

u(x, y) =
1√
4π

ˆ ∞
0

[1− exp(−ky)] sin(kx)
k

exp

(
k2

4

)
dk.

Solution

The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, y)} = U(k, y) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, y) dx,

which means the partial derivatives of u with respect to x and y transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂yn

}
=
dnU

dyn

Take the Fourier transform of both sides of the PDE.

F{uxx + uyy} = F{−xe−x
2}

The Fourier transform is a linear operator.

F{uxx}+ F{uyy} =
1√
2π

ˆ ∞
−∞

(−x)e−x2
e−ikx dx

Transform the derivatives with the relations above.

(ik)2U +
d2U

dy2
=

1√
2π

ˆ ∞
−∞

(−i)e−x2 d

dk
e−ikx dx

Expand the coefficient of U .

−k2U +
d2U

dy2
= (−i) d

dk

1√
2π

ˆ ∞
−∞

e−x
2
e−ikx dx (1)

We just need to find the Fourier transform of e−x
2
.

−k2U +
d2U

dy2
= (−i) d

dk
F{e−x2}

Looking in a table of Fourier transforms, we see that the Fourier transform of a Gaussian function
is a Gaussian function.

−k2U +
d2U

dy2
= (−i) d

dk

e− k2

4

√
2
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Evaluating the derivative, we have

d2U

dy2
− k2U =

ike−
k2

4

2
√
2
. (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
conditions as well. Taking the Fourier transform of the initial conditions gives

u(x, 0) = 0 → F{u(x, 0)} = F{0}
U(k, 0) = 0 (2)

lim
y→∞

u(x, y) = 0 → F
{

lim
y→∞

u(x, y)

}
= F{0}

lim
y→∞

F{u(x, y)} = 0

lim
y→∞

U(k, y) = 0. (3)

Equation (1) is a second-order inhomogeneous ODE, so its general solution is the sum of a
complementary and particular solution.

U(k, y) = Uc + Up

Uc is the solution to the associated homogeneous equation,

d2Uc

dy2
− k2Uc = 0,

which can be written in terms of exponentials.

Uc = C1(k)e
|k|y + C2(k)e

−|k|y

The inhomogeneous term is constant with respect to y, so Up must be a constant as well.

d2Up

dy2︸ ︷︷ ︸
= 0

−k2Up =
ike−

k2

4

2
√
2

Solving for Up gives

Up = −
ie−

k2

4

2
√
2k
.

Consequently, the general solution is

U(k, y) = C1(k)e
|k|y + C2(k)e

−|k|y − ie−
k2

4

2
√
2k
.

For equation (3) to be satisfied, we require that C1(k) = 0. Use equation (2) now to determine
C2(k).

U(k, 0) = C2(k)−
ie−

k2

4

2
√
2k

= 0 → C2(k) =
ie−

k2

4

2
√
2k
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So we have after factoring

U(k, y) = − ie
− k2

4

2
√
2k

(1− e−|k|y).

Now that U(k, y) is solved for, we change back to u(x, y) by taking the inverse Fourier transform
of it.

F−1{U(k, y)} = u(x, y) =
1√
2π

ˆ ∞
−∞

U(k, y)eikx dk

Plug U(k, y) into the definition.

u(x, y) =
1√
2π

ˆ ∞
−∞
− ie

− k2

4

2
√
2k

(1− e−|k|y)eikx dk

Use Euler’s formula to write eikx in terms of sine and cosine.

u(x, y) =
1√
2π

ˆ ∞
−∞
− ie

− k2

4

2
√
2k

(1− e−|k|y)(cos kx+ i sin kx) dk

Distribute −i and bring
√
2 in front of the integral.

u(x, y) =
1√
4π

ˆ ∞
−∞

e−
k2

4

2k
(1− e−|k|y)(−i cos kx+ sin kx) dk

Since a real solution for the PDE is desired, take the real part of u(x, y).

u(x, y) = Re

 1√
4π

ˆ ∞
−∞

e−
k2

4

2k
(1− e−|k|y)(−i cos kx+ sin kx) dk


Only the term with sine remains.

u(x, y) =
1√
4π

ˆ ∞
−∞

e−
k2

4

2k
(1− e−|k|y) sin kx dk

Because the integrand is even with respect to k, we can integrate from 0 to ∞, provided we
double the integral. Also, k only goes through positive values now, so the absolute value sign can
be dropped.

u(x, y) =
2√
4π

ˆ ∞
0

e−
k2

4

2k
(1− e−ky) sin kx dk

Therefore,

u(x, y) =
1√
4π

ˆ ∞
0

(1− e−ky)sin kx
k

e−
k2

4 dk.
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